If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2+10x-12=0
a = 4.9; b = 10; c = -12;
Δ = b2-4ac
Δ = 102-4·4.9·(-12)
Δ = 335.2
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-\sqrt{335.2}}{2*4.9}=\frac{-10-\sqrt{335.2}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+\sqrt{335.2}}{2*4.9}=\frac{-10+\sqrt{335.2}}{9.8} $
| -4x-130=x+45 | | 5/4x+1=7/3 | | X-1/3-3=x-1/2 | | 2/3(3t+6)-1/2(5t-3)=3 | | 10x+4+4x-3=12x+17 | | c-1.5+6.8=0 | | -65-7x=-10x+31 | | 7q2–28=0 | | X-4/3-2=x-1/2 | | s^2=225 | | d2=9 | | |3x-1|=|2x-4| | | 11x-20=40+8x | | 5n2=20 | | 1/4p=4 | | -70-3x=-9x+134 | | 4.9x^2+10x-10=0 | | 5x(3-2)-45=74 | | z/4=z/12+6/3 | | 95+x75=96 | | m÷5-7=12 | | 8x(x-1)^1/2+6(x-1)^3/2=0 | | 4^(2x-x^2)=4^(-8) | | 71x29=x | | -4(-5+5p)+4(6p-6)=-28 | | d2–54=0 | | w(w+1)=30 | | h2+47=47 | | t2=-54 | | -3(x+8)=-2(x-1) | | 4.9x^+10x-10=0 | | -8(1+6a)-3(6a+3)=-17 |